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1 Introduction
Usually, we want to solve some problems related to maximum or minimum, and subject to some
constraints, such as the following:

min
x

f(x) subject to x ∈ K ⊆ Rn (P )

In this course, we will mainly learn the following topics:

• Existence of solution

• Characterization of the optimizer

• Convex optimization or duality

• Numerical method and applications

Let us first focus on “Existence of solution”, and it is natural to ask the following questions:

1. When is the existence of the minimizer x∗?

2. If x∗ exists, which properties that it has to satisfy?

3. How to find the minimizer x∗ and the optimal value f(x∗) = min
x∈K

f(x) numerically?

In the first lesson, we will focus on the section of “existence of optimal solution”. The main reference
for the first part of our course is:

D. Michael Patricksson:
An introduction to continuous optimization Foundations and
Fundamental Algorithms (Section 4)

2 Existence of Optimal Solution
Definition 1. Let f : Rn → R be a function and K ⊆ Rn be a non-empty set. We call the value
ℓ ∈ [−∞,+∞) the infimum of f(x) on K if ℓ satisfies

1. ℓ ≤ f(x), for all x ∈ K,

2. there exists a sequence (xn)n≥1 ⊆ K such that lim
n→∞

f(xn) = ℓ.

Then, we denote
inf
x∈K

f(x) := ℓ

Definition 2. If inf
x∈K

f(x) > −∞ and there exists x∗ ∈ K such that f(x∗) = inf
x∈K

f(x), we say

1. f ∗ := f(x∗) is the minimum value of the problem inf
x∈K

f(x), denoted as min
x∈K

f(x) (P )

2. x∗ is a solution to the minimization problem (P ).

1 Prepared by Max Shung



Definition 3. A function f : Rn → R is called coercive if

lim
∥x∥→+∞

f(x) = +∞ .

Example 1. Let f(x) = xTAx+ bTx+ c, where b ∈ Rn is a vector, c ∈ R is a constant and A is an
n× n symmetric positive-definite matrix. Then f(x) is coercive.

Proof. As A is positive-definite matrix, so we have xTAx > 0 for any x ∈ Rn.
Moreover, if λ is an eigenvalue of A, then we have

xTAx = λxTx = λ∥x∥2 > 0

So, any eigenvalues of A must be strictly positive. Denote

λmin := min {λ : Ax = λx, x ̸= 0} > 0

then we have
xTAx ≥ λmin∥x∥2.

Moreover, as b and c are constants, so we have

f(x) ≥ λmin∥x∥2︸ ︷︷ ︸
Dominated

+bTx+ c → +∞

as ∥x∥ → +∞. This proves that f is corecive.

Proposition 1. Let fi : R → R be bounded below and coercive functions for each i = 1, 2, . . . , n.
Then

f(x) =
n∑

i=1

fi(xi)

is also coercive for all x = (x1, x2, . . . , xn) ∈ Rn.

Proof. Without loss of generality, we may assume fi(xi) ≥ 0 for all xi ∈ R, i = 1, 2, . . . , n.
As fi is bounded below, that is, there exists some m ∈ R such that fi ≥ m for all i, we may replace

g = fi −m ≥ 0

if necessarily. Then, using this fact, we have

f(x) =
n∑

i=1

fi(xi) ≥ max
1≤i≤n

fi(xi) (∵ fi ≥ 0, ∀i)

On the other hand, if ∥x∥ → +∞, then max
1≤i≤n

|xi| → +∞. Now, it remains to show f(x) → +∞ to

conclude that f is coercive. Suppose on contradictory that lim
∥x∥→+∞

f(x) ̸= +∞, then there exists a

sequence of points (xm)m≥1 such that

lim
m→+∞

f(xm) < +∞ as ∥xm∥ → +∞

Since f ≥ max
1≤i≤n

fi, so this follows that lim
m→+∞

fi(x
m
i ) < +∞ for all i = 1, . . . , n.

As ∥xm∥ → +∞, there exists a subsequence (mk)m≥1 and i so that |xmk
i | → +∞.

Using the given fact that fi are coercive for all i = 1, 2, . . . , n, so

lim
m→+∞

fi(xi) ≥ lim
k→+∞

fi(x
mk
i ) = +∞ > lim f(xm)

Contradiction occurs, so we have lim
∥x∥→+∞

f(x) = +∞, i.e. f is also coercive.
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Theorem 2. Let f : Rn → R be a continuous function, and K ⊆ Rn be a non-empty subset. Then

1. If K is compact, then (P ) has an optimal solution x∗ ∈ K

2. If K is closed, and f(x) is coercive, then (P ) has an optimal solution x∗ ∈ K.

Proof. 1. If K is compact, consider a sequence (xn)n≥1 ⊆ K be a minimizing sequence of (P ),
that is

lim
n→+∞

f(xn) = inf
x∈K

f(x)

Then there exists a subsequence (xnk
)k≥1 such that lim

k→+∞
xnk

= x∗ ∈ K (by closeness), and

f(x∗) = lim
k→+∞

f(xnk
) = inf

x∈K
f(x)

(this step aims to concretely define x∗.)

Alternative Proof: Applying Extreme-Value Theorem for f over compact K, then prove the
existence by intermediate value theorem.

2. If f(x) is coercive, so by definition we have

lim
∥x∥→+∞

f(x) = +∞

Then, we have
inf
x∈K

f(x) = inf
x∈Kn

f(x)

where Kn := {x ∈ K : ∥x∥ ≤ n} for sufficiently large enough n ∈ N.
Since Kn is closed (as its complement is open), and bounded in Rn, hence it is compact.
Therefore, there exists x∗ ∈ Kn ⊆ K such that

f(x∗) = inf
x∈Kn

f(x) = inf
x∈K

f(x).

Example 2. The set
K = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}

is closed if g and h are continuous.

Proof. It suffices to prove its complement is open, that is

K ′ := Rn \K = {x ∈ Rn : g(x) > 0 or h(x) ̸= 0}

Now, we aim to find open balls of all x contained in K ′.
Let ε > 0 be arbitrary. By the continuity of g, if g(x) > 0, there exists some δ > 0 such that for any
y satisfying ∥y − x∥ < δ, then we have

|g(y)− g(x)| < ε

i.e. g(y) > g(x)− ε > 0, so there exists an open ball Bδ(x) ⊆ K ′
1 := {x ∈ Rn : g(x) > 0}.

Moreover, by continuity of h as well, there exists some δ′ > 0 such that for any y ∈ Bδ′(x), then

|h(y)− h(x)| < ε

By choosing ε = |h(x)|/2 > 0, we have |h(y)| > |h(x)|/2 > 0, so this proves there exists an open
ball Bδ′(x) ⊆ K ′

2 := {x ∈ Rn : h(x) ̸= 0}. Since K ′ = K ′
1 ∪K ′

2, and from the above, there exists
δ∗ := min{δ, δ′} such that Bδ∗(x) ⊆ K ′. This proves that K ′ is open, that is equivalently showing
that K is closed.
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Proposition 3. Let K ⊆ Rn be a bounded and open subset, and f : Rn → R be a continuous function
on K̄ (the closure of K). If there exists x0 ∈ K such that f(x0) ≤ f(x), for all x ∈ ∂K = K̄ \K,
then (P ) has an optimal solution x∗ ∈ K.

Proof. Since there exists such x0 ∈ K such that f(x0) ≤ f(x), for all x ∈ ∂K, so it follows that

inf
x∈K

f(x) = inf
x∈K̄

f(x)

As K̄ is closed set (after taking closure), and bounded (given), so it is compact.
Moreover, as f is continuous on K̄, so by the Extreme-Value Theorem, there exists x∗ ∈ K̄ such that

f(x∗) = inf
x∈K̄

f(x)

Now, it remains to conclude that x∗ ∈ K but not on ∂K. We consider the following cases:

• Case 1: x∗ ∈ ∂K
From f(x0) ≤ f(x) for all x ∈ ∂K consequences

f(x0) ≤ f(x∗) = inf
x∈K̄

f(x)

this implies that x0 ∈ K is a solution to (P ).

• Case 2: x∗ ∈ K
From the above f(x∗) = inf

x∈K̄
f(x), it follows that x∗ ∈ K is a solution to (P ).

In any case, there exists x∗ ∈ K is a solution to (P ).

3 First order necessary condition of the optimizer x∗

After discussing the existence of optimal solution to (P ), it is natural to ask what properties that
optimizers have. So, we introduce the following theorem:

Theorem 4. If f(x) is continuously differentiable, ∅ ≠ K is an open set in Rn and x∗ ∈ K is an
optimal solution to (P ), then

∇f(x∗) = 0

This is called the Euler’s first order condition.

Proof. We will prove by contradiction. Suppose that ∇f(x∗) =

∂x1f(x
∗)

...
∂xnf(x

∗)

 ̸= 0, then there exists

some v ∈ Rn such that
⟨v,∇f(x∗)⟩ > 0.

Let ε > 0. Define xε := x∗ − εv, then applying the taylor-expansion of f about xε, we have

f(xε) = f(x∗) + ⟨xε − x∗,∇f(x∗)⟩+O(ε2)

= f(x∗)− ε ⟨v,∇f(x∗)⟩+O(ε2)

Since ε > 0 is arbitrary, taking ε → 0+ yields f(xε) < f(x∗) and xε ∈ K.
This contradicts the fact that x∗ is an optimal solution because f(x∗) ̸= inf

x∈K
f(x).

— End of Lesson 1 —
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