THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH4230 2024-25
Lecture 1
January 7, 2025 (Tuesday)

1 Introduction

Usually, we want to solve some problems related to maximum or minimum, and subject to some
constraints, such as the following:

min f(z) subjectto z € K CR" (P)

In this course, we will mainly learn the following topics:
* Existence of solution
* Characterization of the optimizer
» Convex optimization or duality
* Numerical method and applications
Let us first focus on “Existence of solution”, and it is natural to ask the following questions:
1. When is the existence of the minimizer z*?
2. If 2* exists, which properties that it has to satisfy?

3. How to find the minimizer z* and the optimal value f(z*) = mi}r{1 f(z) numerically?
TE

In the first lesson, we will focus on the section of “existence of optimal solution”. The main reference
for the first part of our course is:

D. Michael Patricksson:
An introduction to continuous optimization Foundations and
Fundamental Algorithms (Section 4)

2 Existence of Optimal Solution

Definition 1. Let f : R" — R be a function and X' C R" be a non-empty set. We call the value
{ € [—00,+00) the infimum of f(z) on K if ¢ satisfies

1. ¢ < f(z),forallz € K,
2. there exists a sequence (x,,),>1 C K such that lim f(z,) = /.
- n—oo

Then, we denote

inf f(z):=4¢

zeK

Definition 2. If in}f{ f(z) > —oo and there exists * € K such that f(z*) = in}f{ f(z), we say
Te s
1. f*:= f(z") is the minimum value of the problem inf f(z), denoted as min f(z) (P)

zeK zeK

2. 2" is a solution to the minimization problem (P).
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Definition 3. A function f : R" — R is called coercive if

lim f(z)=+oc0.
l[z]|=-+o00

Example 1. Let f(x) = x” Ax + b’ x + ¢, where b € R" is a vector, ¢ € R is a constant and A is an
n X n symmetric positive-definite matrix. Then f(x) is coercive.

Proof. As A is positive-definite matrix, so we have x’ Ax > 0 for any x € R™.
Moreover, if X is an eigenvalue of A, then we have

xTAx = \x?x = x| > 0
So, any eigenvalues of A must be strictly positive. Denote
Amin ;= min{\ : Ax = Ax, x #0} >0

then we have
xT A% > Ain||%]2

Moreover, as b and ¢ are constants, so we have

f(x) > )\min||xH2 +b’x + ¢ — +00
—_———

Dominated

as ||x|| — +oo. This proves that f is corecive. O
Proposition 1. Let f; : R — R be bounded below and coercive functions for each 1 = 1,2,...,n.
Then

Fx) =" filws)
=1
is also coercive for all x = (x1,x9,...,1,) € R™

Proof. Without loss of generality, we may assume f;(x;) > O0forallz; e R,i=1,2,... n.
As f; is bounded below, that is, there exists some m € R such that f; > m for all 7, we may replace

g=fi—m=>0

if necessarily. Then, using this fact, we have

flx) = foxi) > max fi(z;) (. f; >0, Vi)

T 1<i<n

On the other hand, if ||x|| — +o0, then max |z;] — 400. Now, it remains to show f(x) — 400 to
<i<n
conclude that f is coercive. Suppose on contradictory that | l}im f(x) # 400, then there exists a
X||—+0oo

sequence of points (x™),,>1 such that

lim f(x™) <400 as [x"| — +o0

m—>—+0o0

Since f > max f;, so this follows that lim f;(z]") < +ooforalli=1,... n.

1<i<n m—-00
As ||x™|| — 400, there exists a subsequence (my),,>1 and i so that |z]"*| — +o0.
Using the given fact that f; are coercive forallz = 1,2,...,n, so

lim fi(z;) > lim fi(2]"™) = 400 > lim f(x™)
m——+00 k——+o0
Contradiction occurs, so we have | |l|im f(x) = 400, i.e. f is also coercive. [l
X||—+o0
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Theorem 2. Let f : R" — R be a continuous function, and K C R" be a non-empty subset. Then

1. If K is compact, then (P) has an optimal solution x* € K

2. If K is closed, and f(x) is coercive, then (P) has an optimal solution x* € K.

Proof. 1. If K is compact, consider a sequence (x,),>1 C K be a minimizing sequence of (P),
that is

lim f(x,) = inf f(x)

n—-+o0o

Then there exists a subsequence (x,,, )x>1 such that klim Xn, =X € K (by closeness), and
- ——+00

FO) =l f(xa,) = inf fx)

k—4o00

(this step aims to concretely define x*.)
Alternative Proof: Applying Extreme-Value Theorem for f over compact K, then prove the
existence by intermediate value theorem.

2. If f(x) is coercive, so by definition we have

lim f(x) =400
[|x||—-+o0

Then, we have
in}f(f(x) = inf f(x)
b S

XeKn

where K, := {x € K : ||x|| < n} for sufficiently large enough n € N.
Since K, is closed (as its complement is open), and bounded in R", hence it is compact.
Therefore, there exists x* € K,, C K such that

f(x*) = inf f(x)= inf f(x).

xeK, xeK

Example 2. The set
K={xeR":¢g(x) <0, h(x) =0}

is closed if g and h are continuous.
Proof. It suffices to prove its complement is open, that is
K =R"\ K ={xeR": g(x) > 0or h(x) # 0}

Now, we aim to find open balls of all x contained in K.
Let ¢ > 0 be arbitrary. By the continuity of g, if g(x) > 0, there exists some 6 > 0 such that for any
y satisfying ||y — x|| < ¢, then we have

lg(y) —g(x)| < ¢

ie. g(y) > g(x) — e > 0, so there exists an open ball Bs(x) C K| := {x € R" : g(x) > 0}.
Moreover, by continuity of & as well, there exists some ¢’ > 0 such that for any y € By (x), then

h(y) = h(x)] <e

By choosing ¢ = |h(x)|/2 > 0, we have |h(y)| > |h(x)|/2 > 0, so this proves there exists an open
ball By (x) C Kj := {x € R": h(x) # 0}. Since K’ = K] U K}, and from the above, there exists
6" := min{d, &'} such that Bs«(x) C K'. This proves that K’ is open, that is equivalently showing
that K is closed. U

3 Prepared by Max Shung



Proposition 3. Ler K C R" be a bounded and open subset, and f : R" — R be a continuous function
on K (the closure of K). If there exists xo € K such that f(xo) < f(x), forallx € 0K = K \ K,
then (P) has an optimal solution x* € K.

Proof. Since there exists such xy € K such that f(x0) < f(x), for all x € 0K, so it follows that

inf f(x)= in}ff(f(x)

xeK

As K is closed set (after taking closure), and bounded (given), so it is compact.
Moreover, as f is continuous on K, so by the Extreme-Value Theorem, there exists x* € K such that

fx7) = inf f(x)

xeK
Now, it remains to conclude that x* € K but not on 0 K. We consider the following cases:

e Casel: x" € OK
From f(x,) < f(x) for all x € 0K consequences

f(x0) < f(x¥) = inf f(x)

xeK

this implies that x, € K is a solution to (P).

e Case2: x* e K

From the above f(x*) = inf f(x), it follows that x* € K is a solution to (P).
xeK

In any case, there exists x* € K is a solution to (P). O

3 First order necessary condition of the optimizer x™

After discussing the existence of optimal solution to (P), it is natural to ask what properties that
optimizers have. So, we introduce the following theorem:

Theorem 4. If f(x) is continuously differentiable, ) # K is an open set in R" and x* € K is an
optimal solution to (P), then

Vf(x') =0
This is called the Euler’s first order condition.
O, f(x7)
Proof. We will prove by contradiction. Suppose that V f(x*) = : # 0, then there exists

some v € R"” such that
(v, Vf(x")) > 0.

Let € > 0. Define x. := x* — v, then applying the taylor-expansion of f about x., we have

flxe) = f(x) + (x- —=x", Vf(x")) + O(e?)
= f(x") —e (v, Vf(x")) + O(c?)

Since £ > 0 is arbitrary, taking e — 07" yields f(x.) < f(x*) and x. € K.
This contradicts the fact that x* is an optimal solution because f(x*) # inf( f(x). O
xE

— End of Lesson 1 —
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